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New criterion for craze initiation
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Abstract

Existing criteria for craze initiation are reviewed, and their limitations are discussed. The most obvious problem is that they are formulated
simply in terms of principal stresses, making no provision for the known effects of small inclusions and surface imperfections. To solve this
problem, a new criterion is proposed, which is based on linear elastic fracture mechanics. Craze initiation is treated as a frustrated fracture pro-
cess rather than a yield mechanism. Calculations show that the strain energy release rate, GI(nasc), required to generate a typical 20 nm thick
nascent craze, is less than 1 J m�2. This explains why flaws less than 1 mm in length are capable of nucleating crazes at stresses of 20e30 MPa.
Subsequent craze propagation is dependent upon two flow rates, one relating to fibril drawing at the craze wall and the other to shear yielding at
the craze tip. Under biaxial stress, the second principal stress s2 affects craze tip shear yielding but not fibril drawing. This model is used in
conjunction with the von Mises yield criterion to derive a new expression for the crazing stress s1(craze), which provides a good fit to data
on visible crazes obtained by Sternstein, Ongchin and Myers in biaxial tests on cast PMMA [Sternstein SS, Ongchin L, Silverman A. Appl
Polym Symp 1968;7:175; Sternstein SS, Ongchin L. Polym Prepr Am Chem Soc Div Polym Chem 1969;10:1117; Sternstein SS, Myers FA.
J Macromol Sci Phys 1973;B8:539].
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Craze initiation; Craze propagation; Biaxial stress
1. Introduction

Despite more than 50 years of active research on crazing,
the initiation step is still poorly understood [4,5]. By contrast,
there are now well-developed theories on craze tip advance,
craze thickening [6], and fibril failure. Building upon Argon
and Salama’s meniscus instability criterion for craze propaga-
tion [7], Kramer showed how resistance to craze propagation
increases with entanglement density, and is therefore depen-
dent on chain length and molecular characteristics [8]. At
about the same time, Lauterwasser and Kramer showed that
crazes thicken by a cold drawing mechanism, in which exist-
ing fibrils pull fresh material from the craze walls [9]. This
work led to an understanding of the role of entanglements in
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determining the natural draw ratio lcraze for fibrils [10], and
later to quantitative models for craze failure, involving chain
rupture and disentanglement by forced reptation [11,12].
Each of these topics now has a firm foundation in polymer
physics, enabling them to be investigated and developed theo-
retically at the molecular level [13e18].

The same cannot be said about craze initiation. Criteria
proposed more than 30 years ago by Sternstein and Ongchin
[1,2], and later by Oxborough and Bowden [19], provide
good fits to the experimental data, but leave a number of
important questions unanswered. They assume that crazing
is simply a distinctive type of yielding, and are therefore for-
mulated to resemble standard yield criteria. Unfortunately
they are perceived as being more difficult to apply [4,5].
Before discussing the reasons for these difficulties, it is in-
structive to review the criteria for ordinary plastic deforma-
tion (shear yielding), with which craze criteria are regularly
compared.
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2. Shear yielding

Various criteria have been proposed to define conditions for
yielding in ductile materials, the best known being those due
to Tresca, Coulomb and von Mises. They are based purely
upon the applied stress, and make no allowance for time-
dependence. At low stresses, the time-dependent deformation
behaviour of polymers is well described by linear visco-
elasticity theory, but at higher stresses it is better represented
by the Eyring flow equation [20,21]:

_3¼ _30 exp�
�

DG� toctV � smU

kBT

�
ð1Þ

where _3 ¼ flow rate, DG¼ activation free energy, V¼ shear
activation volume, U¼ dilatation activation volume, kB¼
Boltzmann’s constant, T¼ temperature; toct and sm are the
octahedral shear stress and the mean normal stress (isotropic
component of the stress tensor, also known as negative pres-
sure or hydrostatic tension) given, respectively, by:

toct ¼

h
ðs1� s2Þ2þðs2� s3Þ2þðs3� s1Þ2

i1=2

3
ð2Þ

sm ¼
s1 þ s2þ s3

3
ð3Þ

where s1, s2 and s3 are the three principal stresses. The von
Mises yield criterion specifies that yielding occurs when toct

reaches a critical value. Alternatively, the criterion can be
expressed in terms of a critical effective stress, se, as follows:

se ¼
3toctffiffiffi

2
p ¼

"
ðs1 � s2Þ2þðs2 � s3Þ2þðs3 � s1Þ2

2

#1=2

¼ sy

ð4Þ

where sy is the shear yield stress in both uniaxial tension and
uniaxial compression. As implied by Eq. (1), sy is a function
of strain rate and temperature. In polymers, the critical value
of se at yield is a function of sm, which means that the yield
stress is lower in tension than it is in compression. It is there-
fore necessary to modify the von Mises equation by adding an
extra term, as follows [2,3,20,21]:

seþ msm ¼ scrit at yield ð5Þ

where m is a pressure coefficient (typically w0.38).
Under certain conditions, for example in tensile tests at

23 �C on polycarbonate (PC), the flow rate can increase suffi-
ciently to match the applied strain rate, so that the specimen
reaches a maximum load, necks, and draws before there is
any observable crazing. In that sense, PC can be said to be
craze resistant. On the other hand, crazes form readily in PC
at the tips of sharp notches, for example in fracture mechanics
tests where the material experiences plane strain deformation.
Under these conditions, crazing is both the first stage of brittle
fracture and a mechanism of yielding that can be modelled
using the Dugdale line zone analysis [22]. The dual nature
of crazing appears to be one of the main reasons why there
have been so many problems in formulating a satisfactory
criterion for craze initiation.

3. Criteria for craze initiation

Crazes are crack-like deformation zones formed on planes
normal to the direction of maximum (tensile) principal stress
[1]. Load-bearing fibrils connect the walls of the craze. In ho-
mogeneous glassy polymers such as polystyrene (PS) and poly-
(methyl methacrylate) (PMMA), crazes are usually initiated
from microscopic surface flaws or embedded dust particles.
Dust is difficult to avoid in injection moulding or extrusion,
because these processes begin with pellets that become stati-
cally charged and attract airborne particles. Cast PMMA,
which is made directly from the monomer, is usually much
less contaminated.

Typical surface marks are small random scratches intro-
duced during processing, machining and handling. When these
flaws are removed by assiduous polishing, there is a marked
increase in s1(craze), the critical stress for crazing, sometimes
to the point at which tensile shear yielding and ductile drawing
are produced in relatively brittle polymers such as PMMA and
PS [23]. Similarly, shear yielding can be generated in PMMA
by using a very low strain rate, so that the yield stress is re-
duced as predicted by Eq. (1) [3].

Thus any reproducibility obtained in crazing tests on well-
prepared un-notched specimens appears to depend upon the
presence of a characteristic population of microscopic surface
flaws or embedded foreign particles. This is certainly true for
high-impact polystyrene (HIPS), where rubber particles with
diameters of 1e5 mm initiate crazes in such profusion that
yielding occurs with very little assistance from shear deforma-
tion [24]. The importance of flaws and heterogeneities is
widely recognized, and is discussed at length in papers by
Sternstein and Rosenthal [25] and Argon [26]. Nevertheless,
the problem of how to account quantitatively for the effects
of these flaws has never been properly resolved. There has
been some discussion on flaw shape and its effect on local
stress concentrations [26], but questions relating to flaw size
have been almost entirely neglected.

The earliest studies of craze formation were carried out in
uniaxial tension. Maxwell and Rahm used creep tests on poly-
styrene to show that rates of crazing increase rapidly with
applied stress and temperature [27]. Subsequent analysis has
demonstrated that these kinetic data can be correlated using
the Eyring equation [24]. Because of the exponential depen-
dence of rate upon applied stress, it is possible to define a crit-
ical tensile stress for craze formation occurring within a set
time period. Since the introduction of the Bergen elliptical
strain jig [28], it has been more convenient to specify a critical
tensile strain for crazing, especially in studies of ‘solvent’
crazing.

To investigate crazing under multi-axial loading, Sternstein
et al. cut circular holes through the thickness of PMMA plates,
and subjected them to uniaxial tensile stress [1]. In later work
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on the same grade of PMMA, Sternstein and Ongchin applied
internal pressure plus axial tension to thin-walled cylinders
[2], and Sternstein and Myers subjected cylindrical rods to
combined tension and torsion [3]. These investigators were
thus able to observe craze formation in PMMA under various
states of biaxial loading, encompassing both tensionetension
[2] and tensionecompression [3]. They demonstrated that
there is a boundary between stresses that produce visible
crazes, and those that do not. On the basis of these observa-
tions, they proposed the following criterion for craze
formation:

sb ¼ js1� s2j ¼ A
�
T
�
þ BðTÞ

s1 þ s2þ s3

ð6Þ

where sb is termed the ‘stress bias’, and the quantities A(T )
and B(T ) are materials constants at fixed temperature T.

For the case of biaxial loading, Eq. (6) gives a good fit to
the experimental data in both the first (tensionetension) and
second (tensionecompression) quadrants of principal stress
space, as demonstrated in Fig. 1. The stress-bias curve defines
the lower bound for craze formation. No crazing is observed at
lower applied stresses [3]. Fig. 2 is a more general overview
comparing the stress-bias curve, Eq. (6), with the pressure-
modified von Mises yield criterion Eq. (5). This comparison
was first made by Sternstein and Ongchin [2], who clearly
regarded crazing as an alternative plastic deformation mecha-
nism, which they termed ‘normal stress yielding’.

The stress-bias criterion has not met with universal accep-
tance. The main criticisms have been:

(a) Although Eq. (6) is described as a critical stress-bias
criterion, crazing is observed even when s1 z s2 and
sb z 0. In view of this observation, it is obvious that sb

is not the driving stress for craze initiation. If Eq. (6) is
to be retained, it would be more logical to invert it, and
define a critical mean stress that is dependent upon sb.
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Fig. 1. The stress-bias criterion, Eq. (6), which defines the lower bound for

craze formation under biaxial loading, with experimental data on visible craz-

ing in cast PMMA at 60 �C. The mean stress is zero under pure shear, where

s1¼�s2. The diagram is symmetrical about the equiaxial stress line s1¼ s2.

(After Sternstein et al. [2,3].)
A better name might be the (stress-bias dependent) critical
mean stress criterion.

(b) The magnitude of the stress bias is twice the shear stress
on planes at 45� to the 1 and 2 axes. This again suggests
that sb has no direct bearing on craze thickening, which
produces a displacement along the 1 axis, a further indica-
tion at the major principal stress, s1, is the main driver of
craze initiation. This view is supported by the observations
that there is no preferred orientation for the craze planes
when s1¼ s2, and that these planes are normal to s2

when s2> s1 [29].
(c) The reasons for defining the stress bias simply as js1� s2j

are unclear. When s2 is positive and s3¼ 0, js1� s3j is
larger than js1� s2j but is not included in the criterion.
It is difficult to understand why one stress-bias term is
critical while another has no effect.

(d) The physical principles responsible for the inverse depen-
dence upon the hydrostatic tension are unclear, an issue
that continues to attract adverse comment [17].

(e) Since the maximum stress concentration factor is only w2
near to a spherical void or rubber particle, it is not obvious
why very small holes or particles are such effective craze
initiators.

Some reviewers have also expressed reservations about the
stress-bias criterion on the grounds that it is difficult to apply,
because it requires knowledge of local stress states close to the
origin of each individual craze, and that is usually lacking in
the case of small flaws [4,5,30,31]. Sternstein himself attri-
butes crazing under equal biaxial stress to local anisotropy
in the stress state due to adventitious flaws and structural fluc-
tuations [29]. These comments raise some interesting ques-
tions about craze initiation criteria. If the critical local
stresses s1L(craze) and s2L(craze) close to flaws are not di-
rectly and systematically related to the macroscopic applied
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stresses, how is it possible to obtain well-correlated and repro-
ducible data for the relationship between s1N(craze) and
s2N(craze), the applied principal stresses at craze initiation?
The subscripts L and N are used here to distinguish local
from global stresses.

In an effort to develop a criterion based on more logical
physical principles, Oxborough and Bowden proposed the
following critical tensile stress criterion [19]:

s1� nðs2þ s3Þ ¼ Cðt;TÞ � Dðt;TÞ
s1þ s2þ s3

ð7Þ

which they converted into a critical tensile strain criterion, as
follows:

31 ¼
1

E

�
Cðt;TÞ � Dðt;TÞ

s1 þ s2þ s3

�
ð8Þ

These equations overcome some of the problems listed
above, but are still essentially revised versions of Sternstein
and Ongchin’s stress-bias criterion. Not only do they preserve
the term in reciprocal pressure, but also they are not firmly
based on a priori physical principles, and are open to the
same criticism, i.e. they are difficult to apply because they
require a knowledge of local stress states near microscopic
flaws.

Argon and Hannoosh have carried out a comprehensive the-
oretical evaluation and experimental evaluation of the stress-
bias criterion [23]. Their model for craze initiation assumes
that individual voids are nucleated in regions of high stress
concentration, which are usually close to scratches, embedded
dust or rubber particles. They recognize that it is exceedingly
difficult to nucleate closed pores in a continuous homogeneous
material, because that requires hydrostatic tensions approach-
ing the theoretical cohesive strength of the material. As craze
stresses are usually below sy/3, improbably high stress con-
centrations would be required to form pores in this way
[23,32]. To overcome this problem, they proposed a mecha-
nism of microcracking in which the arrest of micro-shear
bands is the first step in pore nucleation, a concept that has
its origins in crystal plasticity [33].

The applicability of this pore nucleation mechanism to
glassy polymers is questionable. Closed pores are known to
form in rubber-toughened polymers, where cavitation of the
rubber particles is an integral part of the toughening mecha-
nism, but the energy barriers to void nucleation are high, espe-
cially when the shear modulus of the rubber phase is above
1 MPa [34e38]. Lightly cross-linked elastomers exhibit mod-
uli below 1 MPa at temperatures well above Tg, but excep-
tional conditions would be needed to nucleate an internal
void in a glassy polymer at cryogenic temperatures, where
crazing is regularly observed.

Relatively soon after proposing their closed-pore model,
Argon and Hannoosh recognized that it cannot be applied to
craze propagation [23]. There are two problems: it fails by
orders of magnitude to account for the observed rates of craze
growth, and it predicts the formation of a closed-cell foam,
which could not give rise to the fibrillar open structure of
a craze. As an alternative, they proposed the meniscus instabil-
ity criterion illustrated in Figs. 3 and 4. This begins with a typ-
ical concave airepolymer interface (the meniscus), which is
usually represented as the rounded tip of an existing craze.
The liquid-like meniscus adopts a shape that minimizes sur-
face energy, in accordance with standard theory. Ahead in
the propagation direction is a void-free plastic zone. A plan
view shows all points along the advancing meniscus initially
lying approximately on a straight line or smooth curve. How-
ever, the small surface area of the meniscus limits the rate of
flow in the fluid zone, and therefore the rate at which the flow
front advances. Consequently, the meniscus becomes unstable
when the solid blocks of polymer enclosing the meniscus are
pulled apart at a sufficiently high rate. Instead of maintaining
a linear flow front, the interface extends air-filled fingers for-
ward into the fluid zone. In other words, it breaks. Examples
of this behaviour, on a much larger scale, have been observed
in layers of rubber bonded between rigid plates that are pulled
apart at a constant rate [39]. In crazes, the oriented walls that

Nascent Craze Fibrils
Meniscus

Plastic Zone
10 nm

Fig. 3. Schematic profile view of craze tip showing nascent fibrils w6 nm in

diameter, and plastic zone with fluid meniscus.

Fig. 4. Schematic plan view of craze tip, showing air fingers extending into the

plastic zone, leaving craze fibrils in their wake. Arrow indicates propagation

direction.
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separate neighbouring air-filled fingers eventually break up,
leaving the characteristic fibrillar structure.

The meniscus instability mechanism overcomes the prob-
lems posed by the pore nucleation model for craze propaga-
tion. It is not necessary to rely on special effects to account
for hypothetical pore formation. The meniscus simply ad-
vances like a sharp transverse crack propagating through an
aligned fibre composite, leaving load-bearing fibrous material
in its wake. However, despite the success of this model, both
Argon and Kramer retained the pore nucleation principle to
explain craze initiation [26,31,32]. Their main reason for do-
ing so appears to be that it offers an explanation for the depen-
dence of s1(craze) on hydrostatic stress and shear stress, as
expressed by the stress-bias criterion and its successors.

There are two major problems associated with this ap-
proach. First, it is difficult to understand why two completely
different mechanisms should be needed for the same physical
process, which produces a fibrillated craze. Second, as already
conceded by its originators, the pore model results in a closed-
cell foam, which is most unlikely to produce a craze-generat-
ing open meniscus. The obvious solution is to discard the
closed-pore hypothesis, and rely entirely on the meniscus in-
stability mechanism to explain both initiation and propagation.

Finally it should be noted that Kausch, in a review dated
1983, includes linear elastic fracture mechanics (LEFM) as
a possible basis for a craze initiation criterion, citing papers
on solvent crazing [30]. There is some logic behind this pro-
posal, in that crazes always extend ahead of propagating
cracks in rigid glassy thermoplastics. However, it has subse-
quently received little attention or support from the polymer
mechanics community, essentially because it produces unreal-
istic values for the fracture energy GIC at craze initiation when
measured or estimated values of flaw size a0 and applied stress
s1(craze) are inserted into the Griffith equation [40]:

s1ðcritÞ ¼
�

EGIC

Y2ð1� n2Þpa0

�1=2

ð9Þ

where E¼Young’s modulus, n¼ Poisson’s ratio, and Y is
a geometrical factor.

As noted earlier, crazes form in apparently flawless PMMA
and PS specimens at tensile stresses of 20e40 MPa. Closer
inspection reveals that flaws are present, but have very small
dimensions. For example, Argon and Hannoosh observed
craze initiation in PS from rounded blunt scratches up to
w0.25 mm deep. Dust particles with diameters of w1 mm
are equally capable of initiating crazes, and rubber particles
with diameters of 1 mm are also extremely effective [24].

The limitations of LEFM in predicting craze initiation were
first noted by Berry, who measured the critical tensile
strengths sc of polystyrene bars containing introduced edge
cracks [41]. For cracks with lengths a0� 1 mm, sc

2 varied lin-
early with 1/a0, in accordance with Eq. (9). However, when the
cracks were below 1 mm in length, fracture did not occur from
the introduced crack. Instead, brittle failure was initiated from
previously undetected imperfections located elsewhere on the
surface of the bar. Consequently sc became independent of a0,
remaining constant at w40 MPa. Thus microscopic barely vis-
ible flaws proved to be more potent initiators of crazes and
cracks than clearly visible 1 mm introduced cracks. In the
face of this evidence, it was difficult to see how LEFM could
be applied successfully to craze initiation. The evident absence
of 1 mm crack-like defects, which would be easy to see in
a transparent glassy polymer like polystyrene, led Drabble
et al. to dismiss the fracture mechanics approach, and develop
a model for internal void formation within the solid polymer
as an alternative mechanism of craze initiation [42]. As noted
earlier, this closed-pore model has since been discredited [26].

The foregoing review identifies a number of difficulties and
inconsistencies in existing theories of craze initiation, which
are unlikely to be resolved without a paradigmatic shift in
thinking. The aim of the present paper is to develop a new cri-
terion for craze initiation that addresses these problems. To be
worthwhile, the model should offer an insight into the funda-
mental mechanisms of craze initiation, and enable researchers
to develop the subject theoretically, so that craze initiation
becomes properly integrated into polymer physics.

4. New criterion for craze initiation

Before attempting to formulate a new criterion, it is first
necessary to define what is meant by the term ‘craze initia-
tion’. Here, the evidence provided by transmission electron
microscopy (TEM) is particularly valuable. Studies on craze
tips in PMMA and PS show that the minimum thickness of
a newly formed craze layer is between 12 and 20 nm
[31,43]. Since lcraze¼ 4.3 in PS [10], the solid layer that pro-
duces a nascent craze in this polymer cannot be more than
5 nm thick. For PMMA, in which lcraze¼ 2.6, the calculated
initial thickness is about 8 nm.

Through the mechanism of fibril drawing, newly formed
crazes can increase in thickness by a factor of more than
100. Optical interferometry shows that they eventually reach
thicknesses of w3 mm in PMMA before fracture [44], and
Lauterwasser and Kramer have recorded a 7 mm thick craze
at a crack tip in PS [9]. On the basis of this evidence, it is clear
that GI(craze), the energy required to initiate unit area of a na-
scent craze which is only 0.02 mm thick, is much smaller than
the GIC values measured in conventional LEFM tests, and that
the case for dismissing the fracture mechanics approach to
craze initiation is not as strong as it has appeared to be in
the past. The TEM studies also show that crazes cannot be-
come visible to the naked eye until they have grown consider-
ably in thickness and in length. The amount of white light
reflected from a 20 nm thick layer is negligible, and crazes
with lengths below 10 mm are very hard to see. To achieve
the necessary growth, the local applied stress must reach sfd,
the nominal fibril drawing stress, which is a function of the
shear yield stress sy and the strain rate [5,31].

Further relevant evidence is presented in Fig. 5. The data
come from LEFM tests on PS and PMMA samples of differing
viscosity average molecular weights Mv [45,46]. Because mo-
lecular weight is an unsatisfactory basis for comparing two
different polymers, the measured fracture toughness GIC has
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been plotted against Ne, the average number of entanglements
per chain. Here, Ne¼Mv/Me, where Me is the entanglement
molecular weight obtained from observations of the plateau
region in the melt state. Following Donald and Kramer, Me

is taken as 19,100 for PS and 9150 for PMMA [10].
The van der Waals surface energy Gs is w40 mJ m�2 for PS

and PMMA [8,47,48] and the minimum possible value for GIC

is therefore w80 mJ m�2. Interestingly, the lowest data point
for PS occurs at GIC¼ 250 mJ m�2, close to the absolute min-
imum, and the trend in the PMMA data is also towards this
limit. In view of this, the value of 250 mJ m�2 obtained earlier
by applying the Griffith equation to craze initiation from small
spherical flaws looks more realistic. As the molecular weight
of the polymer increases, entanglements come increasingly
into play. Consequently, failure of crazes is flow-controlled,
and GIC rises steeply before levelling out at between 600
and 1000 J m�2. In the third region of the graph, where GIC be-
comes independent of Mv, chain scission is the rate controlling
factor in craze failure.

The picture that emerges from this analysis is that craze ini-
tiation becomes possible when the strain energy release rate GI

is between 0.1 and 1.0 J m�2, and in short-term tests on typical
glassy thermoplastics is followed by a large increase in energy
absorption as the craze thickens through the plastic process of
fibril drawing. This view is supported by the observations of
Berger on thin films stretched in situ on the stage of a TEM
[11]. He found that the strains at which crazes initiate are in-
dependent of molecular weight between Me and 100Me, while
the extent of subsequent drawing increases rapidly with
molecular weight, before reaching a plateau. In PS, initiation
occurs at a strain of w0.5%, with the local failure strain
eventually reaching w30%.

In view of this body of evidence, there are good reasons for
looking again at the possibility of formulating a craze initia-
tion criterion based on linear elastic fracture mechanics.
Although true fracture does not immediately follow craze
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initiation (unless the chains are exceptionally short), it is nev-
ertheless possible to characterize initiation in terms of a critical
energy release rate, here denoted by the symbol GI(nasc). The
new criterion is then given by a modified version of the Grif-
fith equation, as follows:

s1ðnascÞ �
�

EGIðnascÞ
Y2ð1� n2Þpa0

�1=2

ð10Þ

The justification for applying a fracture mechanics criterion
to craze initiation is that the notch-tip meniscus is unstable
from the instant that fingers begin to extend forward until
the nascent craze fibrils are fully stretched. There is a large
and rapid increase in the extension ratio l1, for example
from <1.2 to >4, with no intermediate position of stability.
A good analogy for craze initiation and subsequent fibril
drawing would be a rock climber losing his hold, falling
until the safety rope is taut, then being lowered to a ledge
below. The mechanics of the fall is not affected by the
presence of the climbing rope, although the final outcome
is. The only difference between a nascent craze in a high
molecular weight polymer and a nascent crack in a very
low molecular weight polymer is that in the first material
the tie molecules are long enough to prevent final fracture.
The criterion for instability is the same in both cases. The
strain energy released when the tensile stress on the meniscus
drops sharply and the walls of the flaw move apart is sufficient
to supply the energy required for the newly created cohesive
failure surface.

This analysis demonstrates that craze initiation should be
classified as a type of brittle fracture, which is prevented
from causing a complete break only by the delayed interven-
tion of an internal reinforcement mechanism. The effective-
ness of that mechanism is reduced by reducing the chain
length, either at the manufacturing stage or through later deg-
radation. The only alternative to accepting the LEFM model
appears to be a return to the problems thrown up by previous
craze criteria, which simply ignore the overwhelming impor-
tance of flaw size. To summarise, the arguments for the new
model are as follows:

(a) Like crack growth, craze initiation is a form of cohesive
failure. It is not a simple yield mechanism.

(b) The stress required to initiate crazes from microscopic
flaws is a strong function of the flaw size. Careful polish-
ing to reduce the maximum flaw size results in a substan-
tial increase in sI(craze), sometimes leading to complete
suppression of craze formation. This type of behaviour
is characteristic of fracture processes, and is best described
using equations based on fracture mechanics. Previous
attempts to formulate crazing criteria without reference
to flaw sizes have failed.

(c) At the onset of meniscus instability, it is impossible to de-
termine whether the mechanism that takes place will lead
to complete fracture (when chains are very short) or to
craze formation (when chains are long). The same criteria
apply to the initiation mechanism in both cases, although
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the final outcomes are different in one important respect:
there are no tensile stresses acting on the faces of a true
crack, whereas a craze continues to support tensile stresses
as it propagates.

(d) Energy is required to form new surface within a craze as it
extends its planar area, just as in true fracture.

In this context, it is important to remember that the quantity
measured in standard LEFM tests is the energy release rate GI

at instability. The only basic difference between GIC and the
proposed new quantity GI(nasc) is that attainment of GIC re-
sults in an increase in true crack length and therefore a further
increase in GI. Initiation of a true crack is followed immedi-
ately by crack propagation, which in standard test specimens
leads to catastrophic fracture. More subtle and elaborate
methods are needed to observe the initiation of a craze. Crazes
should be treated as frustrated cracks, in which the walls are
connected by load-bearing fibrils. There is an obvious parallel
with two-stage fracture in long-fibre composites. In both cases,
the brittle matrix breaks, but fibre pull-out is needed to pro-
duce complete failure.

Crazing is a cohesive failure process occurring on planes
lying normal to the major principal stress. It is sometimes as-
sociated with obvious notches and precracks, but in many in-
stances it initiates from microscopic surface flaws, at very low
strain energy release rates. When the initiating flaws are large,
fracture follows almost immediately. When they are very
small, there is a long period of development before cata-
strophic brittle fracture terminates the process. This sequence
of events typically takes place at stresses well below the shear
yield stress.

The above statement is equally valid if the word ‘crazing’
is replaced with the phrase ‘sub-critical crack growth’, a term
that embraces both dynamic fatigue and time-dependent crack
growth under static loading [40]. Furthermore, at the point of
instability a micron-sized observer placed close to the flaw tip
would find difficulty in distinguishing between: (a) initiation
of a dynamic fatigue crack during the first loading cycle;
(b) initiation of sub-critical crack growth under static loading;
and (c) initiation of a craze. In each of these cases, initiation is
preceded by local shear yielding, albeit on a very small scale.
Then, at the critical point, the yield zone becomes unstable
and the crack front advances by a small (sometimes impercep-
tible) amount. For example, fatigue cracks in polymers ad-
vance at rates as low as 1 nm per cycle [40]. The crack
does not necessarily advance uniformly across the whole
front, like a line of soldiers on parade. There will almost
certainly be some irregularity. If the newly formed precrack
extension is temporarily held together by reinforcing
fibrils, it is a craze. If not, it is a true crack. Differences
between the growth behaviour of crazes and cracks are not
to be found in the criteria for initiation but in the criteria
for propagation.

It is worth noting that the energy release rate principle is
not unique to fracture and craze initiation. It applies whenever
a new surface is created in a liquid or solid. Examples include
crystallization from pure liquids and solutions, and bubble
formation in a pure liquid at its boiling point. The initial nu-
cleation step is always a problem, because the energy release
rates are proportional to r3, where r is the characteristic dimen-
sion of the newly formed phase (e.g. the bubble radius),
whereas the energy required to form the surface is proportional
to r2. At small r, the surface term dominates, and the energy
release rate might be insufficient to overcome the energy
barrier. Therefore nucleation agents such as seed crystals or
beaker walls play an important part in initiating the formation
of a new phase.

In his seminal work on fracture mechanics, Griffith
assumed that brittle fracture initiated from atomically sharp
micro-cracks, and that the stresses at the crack tips were
high enough to break inter-atomic bonds. It is now recognized
that crack propagation is always preceded by energy-dissipat-
ing flow around the notch tip, and fracture mechanics speci-
mens are therefore designed to minimize that flow, by
making the tip radius as small as possible and ensuring that
the notch length and specimen dimensions are large enough
to produce plane strain conditions. These precautions ensure
that the work done in breaking through the notch-tip plastic
zone is minimized, so that the measurements generate valid
GIC data. The same principles apply to craze initiation.

Since craze tip thicknesses are between 10 and 20 nm,
the critical craze tip opening displacement dcraze is
smaller, typically between 6 and 15 nm, depending on the
characteristic craze extension ratio lcraze. Using these figures,
it is possible to estimate a minimum value for GI(nasc) in the
same way that GIC is estimated from the crack-tip opening
displacement:

GI

�
nasc

�
¼ sydcraze ð11Þ

With sy¼ 40 MPa and dcraze¼ 15 nm, Eq. (11) gives
GI(nasc)¼ 600 mJ m�2. Some of this energy is absorbed in
creating new surface and stretching the material into fibrillar
form; the remainder is converted into heat. The balance
between surface energy and viscous work in fibril drawing is
discussed in detail in a review by Kramer [31].

Using a simple model, it is possible to estimate the energy
absorbed in creating new surface by forming fibrils in a specific
glassy polymer. Consider a cylindrical element of solid poly-
mer with cross-sectional area A0 and thickness h0, which
stretches to form a cylindrical craze fibril of radius r, cross-
sectional area A, and length h. The extension ratio of the fibril
is given by l¼ h/h0. Assuming that stretching occurs at con-
stant volume:

A¼ pr2 ¼ A0h0

h
¼ A0

l
ð12Þ

Since a craze has two walls, the area of new surface, Asf is
given by:

Asf ¼ 2ðA0�AÞ þ 2prh¼ 2A0

�
1� 1

l
þ h

rl

�
ð13Þ
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The contribution of surface energy to GI(nasc) is then
given by:

Usf ¼ 2Gs

�
1� 1

l
þ h

rl

�
ð14Þ

where Gs is the surface energy of the polymer forming the
craze fibrils.

Typical fibril radii are w3 nm in polystyrene [5]. With
Gs¼ 40 mJ m�2, h¼ 12 nm, and l¼ 4.3, Eq. (14) gives
Usf¼ 136 mJ m�2.

Thus Eq. (10) defines a new criterion for craze initiation,
while Eqs. (11) and (14) illustrate the way in which the criterion
can be related to craze dimensions and materials characteristics.
These three equations enable craze initiation from visible cracks
to be understood and predicted. With minor modifications,
they are applicable to propagation from an existing craze tip.
The main requirement is to adjust the strain energy release
rate to allow for the closure stresses imposed by the fibrils on
the craze walls, and the wedge-opening effect of the large tensile
strain in the craze [22]. The application of these equations to
specimens containing no obvious flaws or cracks is a greater
challenge, which is addressed in Section 5.

5. Crazing from microscopic flaws

The best documented information about surface flaws
comes from work by Argon and Hannoosh on crazing in poly-
styrene, which demonstrates that surface roughness strongly
affects the kinetics of craze nucleation [23]. These authors
used precision machining of annealed compression-moulded
blocks to manufacture tubular specimens with a central,
thin-walled hour-glass section, and polished both inner and
outer surfaces of the tubes very carefully to produce a finish
with no features detectable under an optical microscope. Be-
fore polishing, they observed extensive crazing in these spec-
imens at tensile stresses of w20 MPa. After polishing, they
found that the critical stress for craze formation was raised
substantially, generally to a range between 60 MPa and the
shear yield stress at w100 MPa. The next step was to intro-
duce parallel shallow scratches by spinning the specimens
about their long axes and touching the polished surfaces for
10 s with a wet velvet cloth carrying 4 mm SiC particles. After
making high-resolution metal replicas, they measured the pro-
files of these scratches using an interference microscope,
which showed that the scratches were rounded shallow
grooves up to 0.25 mm deep, many of them having a semicircu-
lar cross-section. To calculate the stress concentration factor g,
they treated the grooves as being semi-elliptical in section with
axes of lengths a and b, where a is the depth of the groove.
Then:

g¼ 1þ 2a

b
ð15Þ

Calculated values of g ranged from 2.5 to 5.0.
Under applied biaxial stresses, these flaws generated very

large numbers of small crazes, at surface populations rising
to 100,000 cm�2. This figure should be compared with popu-
lations of 10,000 cm�2 generated under similar applied
stresses in specimens that were neither polished nor deliber-
ately scratched. Argon et al. [32] note that Sternstein’s defini-
tion of craze initiation also appears to be based on a craze
density of 10,000 cm�2.

On the basis of these results it is reasonable to assume that
the adventitious surface damage incurred by mechanical test
specimens also consists largely of shallow scratches, with
depths and profiles comparable to those produced by the SiC
abrasive. Applying this assumption to Sternstein’s biaxial tests
on PMMA at 60 �C, with Y¼ 1.12 for an edge notch
[40,49,50], the values required for LEFM calculations are
E¼ 2 GPa, a0¼ 0.25 mm, Y2¼ 1.25 and n¼ 0.4. For the low-
est point on the stress-bias curve, at s1(craze)¼ 21 MPa, Eq.
(10) gives GI(nasc)¼ 180 mJ m�2. This is probably an overes-
timate, because the critical stresses recorded in Fig. 1 are not
necessarily craze initiation stresses. At initiation, crazes are
not thick enough to reflect visible light, which requires thick-
nesses of at least 200 nm (i.e., half the wavelength of violet
light). Consequently, the data points in Fig. 1 should be re-
garded as evidence for craze thickening and propagation rather
than of craze initiation. Under some circumstances, these pro-
cesses might occur in quick succession, but there could be
a long delay.

As illustrated in Figs. 3 and 4, craze growth involves a se-
quence of three distinct processes: the development of a small
plastic zone at the craze tip; unstable plastic flow in the menis-
cus leading to the formation of fingers and fibrils; and fibril
drawing from the craze walls. Of these, the first two are likely
to be the most susceptible to the biaxial stress state; there is no
obvious reason why fibril drawing stresses sfd should be
affected by the second principal stress s2. On the other hand
there are good grounds for concluding that biaxial loading
affects the behaviour of the craze tip plastic zone.

A first step towards testing this hypothesis is to simplify
Eq. (4) by setting s3¼ 0. This gives the von Mises equation
under biaxial loading as:

seðs1;s2Þ ¼
�
s2

1� s1s2þ s2
2

�0:5¼ scrit � msm ð16Þ

When m¼ 0 and se is held constant at sy, this function gen-
erates the characteristic von Mises ellipse in biaxial stress
space. Alternatively, inclusion of the pressure-dependent
term produces the modified ellipse shown in Figs. 1 and 2.
In both cases, s1(von Mises) reaches a maximum in the tensile
quadrant, while s1(craze) passes through a minimum in the
same region of stress space. There appears to be some sort
of inverse relationship between the two criteria. A simple
method for testing this possibility is to assign a fixed value
S0 to s1 and calculate se as a function of s2. Eq. (16) then
gives:

seðS0;s2Þ ¼
�
S2

0� S0s2þ s2
2

�0:5
hS0

�
1�RþR2

�0:5 ð17Þ

where R¼ s2/S0. Fig. 6 shows the curve obtained using Eq.
(17) with S0¼ 24.4 MPa. It bears a remarkable resemblance
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to the stress-bias curves in Figs. 1 and 2. This observation sug-
gests that shear plasticity exerts a controlling influence upon
the formation of visible crazes. This is not surprising, since
shear plasticity at the crack tip is known to control the forma-
tion of visible cracks in metal specimens which initially con-
tain only microscopic Griffith flaws [49,50].

Further evidence in support of this conclusion is presented
in Fig. 7, which compares Sternstein’s biaxial data on
s1(craze) with the local effective stress seL(S0, s2) calculated
using Eq. (17). It is important to emphasize that the ‘local ef-
fective stress’ is different from the global effective stress seN

calculated for each pair of test data [s1(craze); s2(craze)]. It
refers to a critical effective stress se(S0, s2) at a specific loca-
tion (yet to be identified), where the critical local stress s1L is
equal to S0, the measured critical crazing stress s1(craze) un-
der uniaxial tension (in this case 24.4 MPa). The reasons for
investigating this set of stresses are first that it generates the
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curve shown in Fig. 6, and second that it has some physical
significance, as explained below.

The linear relationship shown in Fig. 7 between s1(craze) and
se(S0, s2) establishes a correlation between s1 and s2 at craze
initiation that overcomes the limitations of previous craze crite-
ria. As points A and B fall outside the main scatter band, they
have been omitted from the calculation of a linear regression
line. The justification for this decision is that Sternstein’s data
were intended to define a lower bound for visual observation
of crazes, and that crazing is inevitably affected by the onset
of general plasticity close to the von Mises envelope, so that
some high readings are to be expected. Without points A and
B, the correlation coefficient is 0.96, and the intercept on the
ordinate axis is 0.96 MPa. A straight line drawn parallel to the
regression line, but running through the origin, marks the lower
bound on the experimental data.

On the basis of this empirical correlation, the criterion for
craze formation in specimens containing no obvious cracks
or flaws can be written:

s1ðcrazeÞ ¼ S0

�
1�RþR2

�0:5 ð18Þ

This equation correlates the craze opening stress with a crit-
ical local plastic flow stress S0(1, R, 0) operating somewhere in
the specimen when crazing is first observed. It raises two ques-
tions, one relating to the location of the controlling plastic
zone, and the other to the relatively low effective stresses
that are responsible for plastic flow. Under uniaxial tension
the critical local flow stress is 24.4 MPa, whereas the global
shear yield stress is 41.6 MPa. Nevertheless, there is general
agreement that shear yielding at the crack/craze tip always
precedes crazing. As the meniscus instability mechanism
depends upon some form of relatively rapid flow, something
unusual must be happening at the meniscus.

Of the two plastic flow regions that are responsible for
craze growth, the craze wall can be discounted as the region
in which the critical local tensile stress s1L(crit)¼ S0. While
the craze is propagating, s1L is the fibril drawing stress sfd,
which is approximately equal to s1(craze) [5]. Only under
uniaxial tension is sfd¼ S0. Plasticity in the craze wall cannot
account for the relationship expressed in Eq. (18) and Fig. 7.

Local plasticity is a necessary condition for fibril drawing,
and is made possible at moderate local stresses by the en-
hanced mobility of the chain segments. This might be the re-
sult of strain softening as the strain increases from w0.01 in
the sub-surface to >2 in the craze fibrils, but a more likely ex-
planation is that it is due to the close proximity of the craze
wall. Numerous studies have shown that the mobility of chain
segments increases substantially within 5e10 nm of a free sur-
face, and that this leads to a substantial depression in the glass
transition temperature. Further information on this rapidly
developing area can be found in a review by Jones [51] and
a recent paper by Peter et al. [52], which is quoted to represent
a large body of current literature.

The other region of plastic flow is the craze tip. Here again
there is a small plastic zone that is within 5 nm of a free sur-
face and is subject to a high strain gradient, from w0.01 in the
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bulk of the specimen to a much higher level in the meniscus.
High levels of fluidity would not be possible in the meniscus
without enhanced chain segment mobility. The mechanical
properties of the polymer forming the meniscus appear to be
comparable with those of a non-crystalline thermoplastic at
a temperature well above Tg, where it can best be described
as elasto-viscous. Elasto-viscous behaviour is responsible for
the phenomenon of melt fracture, which occurs in extruder
dies at high rates of elongation [53], and there are possible
parallels between melt fracture and meniscus instability.

The standard LEFM approach is to treat crazes as Dugdale
yield zones, which are modelled by applying closure stresses
to reduce the craze tip stress concentration factor to 1.0,
then wedge-opening forces to generate enhanced tensile
strains at the tip of the yield zone [40,49,50]. This method pre-
dicts an elastic stress concentration ahead of the craze tip,
where first yield occurs. Closer to the tip, stress relaxation
occurs, and the polymer flows under effective stresses that
are lower than the macroscopic yield stress. The evidence
from Eq. (18) and Fig. 7 indicates that under uniaxial tension
the critical effective stress in the meniscus at the point of
instability is 24.4 MPa in PMMA at 60 �C.

It is important to remember that meniscus instability is a re-
sponse to an excessive rate of wall separation [23]. If the fluid
cannot flow rapidly enough to maintain stability, it undergoes
cohesive failure and forms fibrils. In a craze, the wall separa-
tion rate is determined by the fibril drawing stress, which is
approximately equal to s1(craze) [5]. The flow rate in the me-
niscus is controlled by the reduced local viscosity associated
with enhanced molecular mobility, and by the effective stress
applied to the plastic zone. If S0 remains constant and s2

becomes increasingly negative, meniscus instability therefore
occurs at a higher rate of wall separation, which is sustained
by a corresponding increase in s1N. This explains the general
form of the craze criterion in Figs. 1 and 2. Although fibril
drawing and craze tip plastic flow are different processes,
both are controlled by shear flow in the fluidized polymer
close to a free surface, and depend upon the same Eyring
kinetics. Consequently, an increase in critical flow rate at the
craze tip is matched by an increase in fibril drawing rate. On
the evidence of Sternstein’s biaxial data, it can be concluded
that the meniscus region is able to support large differences
in principal stresses, unlike a true (Newtonian) liquid. In other
words, the polymer close to the meniscus behaves as an elasto-
viscous material rather than a simple liquid, as discussed
earlier.

It is interesting that s1L(crit), the critical local tensile stress
at instability, has the same value S0 under all applied biaxial
stress states. This is one of many areas identified in the present
study that would repay further investigation.

Variations in test temperature appear to affect rates of fibril
drawing and craze tip yielding equally. Consequently, Eq. (18)
defines biaxial yielding over a wide range of temperatures, as
observed by Sternstein et al. [1e3]. Only the parameter S0

changes, as predicted by the Eyring equation. The stress re-
quired to reach the critical flow rate decreases with increasing
temperature.
6. Discussion

This study has shown that the formation of visible crazes is
governed by two quite different criteria. Initiation occurs
when the strain energy release rate GI reaches a critical value,
GI(nasc), which is typically between 0.1 and 1.0 J m�2 in
glassy thermoplastics. Propagation occurs when the loading
conditions are sufficient to induce instability in the resulting
craze tip meniscus. The distinction between the two criteria
is unimportant when the specimen contains relatively large
cracks or notches, because in these cases the condition
GI>GIC is easily satisfied, where typical values for GIC are
in the range 100e1000 J m�2. Craze initiation is immediately
followed by both craze growth and crack propagation.
Dugdale’s model predicts the current length of the craze,
which increases with crack length [40]. However, GI(nasc) is
so low that crazes can also initiate from microscopic flaws
or cracks, which do not necessarily propagate as the craze
extends. Under these conditions, the craze propagation crite-
rion becomes important. Its influence is shown most clearly
in biaxial tests on apparently defect-free specimens.

There are some parallels here with fatigue crack propaga-
tion. Large precracks enable the specimen to reach the critical
crack-tip stress intensity KIC during the first loading cycle, so
that the finer details of propagation behaviour are unimportant.
At the other extreme, very small precracks remain inactive be-
cause the stresses required to reach the threshold amplitude for
crack growth, DKth, are above the shear yield stress. Between
these limits, fatigue crack growth is controlled by crack-tip
conditions, which are characterized by the stress intensity am-
plitude DKI, the loading ratio KI(min)/KI(max), and a number
of other factors including frequency and waveform. Efforts to
develop empirical criteria for fatigue failure continued until
relatively recently, and were abandoned only when fracture
mechanics became generally recognized as the most rational
basis for characterizing and predicting sub-critical crack
growth. The same comments apply to sub-critical crack growth
under static loading. In glassy polymers, slow crack growth
under both dynamic and static loadings invariably involves
the initiation and propagation of crazes, and is best analyzed
using fracture mechanics.

The new criterion for craze initiation proposed in this paper
is simply an adaptation of the Griffith equation. The three
elements of novelty lie in recognizing that craze initiation
should be classed as a type of fracture process rather than a
form of yielding, that any criterion for craze initiation must con-
tain a critical flaw size, and that the critical strain energy release
rate can be as low as 0.1 J m�2. This low value is consistent with
GIC measurements on glassy polymers with low molecular
weights, and to a lesser extent with DKth data from fatigue tests
on the same materials. There are practical problems in detecting
crack growth at vanishingly low propagation rates and defining
the real threshold. Like fatigue cracks, crazes often initiate from
microscopic surface flaws or internal defects. There is ample
experimental evidence for craze nucleation at rounded flaws
with dimensions below 1 mm, including scratches, embedded
dust, and spherical rubber particles.
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Kramer attributes variations in crazing resistance between
different glassy thermoplastic polymers to differences in the
operational surface energy Gs, which is higher than the true
surface energy given in reference books [47,48]. These differ-
ences arise mainly because the formation of craze fibrils nec-
essarily involves breaking chemical bonds, and the number of
bonds broken depends upon the entanglement density.

The principles outlined above provide a sound basis for
reinterpreting some of the puzzling results that have been
reported in the past. Among these are Berry’s observations
on fracture in PS and PMMA specimens containing introduced
cracks of length a0 [41]. In both materials, the tensile stress at
fracture sf is proportional to a0

�0.5 over a wide range of crack
lengths, in accordance with Eq. (9). However, there is a devia-
tion at small a0. Below a certain limit, the strength no longer
increases as the introduced crack length is reduced. Instead,
crazes that originate elsewhere in the specimen are responsible
for fracture. For PMMA this limit lies at 50 mm, but for PS it is
much higher, at 1 mm.

The explanation for the difference is to be found in Berry’s
photographs, which show the cracks generated in the two poly-
mers on insertion of a wedge into square-tipped saw cuts. The
aim was to sharpen the tip while increasing a0 by a small
amount. In PS this procedure resulted in a dense layer of
sub-surface crazing close to the extension crack, which raised
GIC to 1700 J m�2 in subsequent LEFM tests. By contrast, in
PMMA the wedge produced a clean crack extension, which
presumably had a single craze at its tip; the measured GIC

was 300 J m�2. Polystyrene’s low intrinsic resistance to craze
initiation resulted in an artificially high fracture toughness
measurement, so that a stress of 40 MPa was required to frac-
ture a specimen with a0¼ 1 mm. By contrast, the tests on
PMMA gave a more realistic fracture toughness because there
was only one notch-tip craze to absorb the energy, so that
a 50 mm crack was sufficient to induce fracture at an applied
stress of 40 MPa. In both polymers, each active small flaw ini-
tiated a single craze at 40 MPa, and many of them were capa-
ble of causing final fracture before GI became critical for the
introduced crack. With care, it is now possible to avoid multi-
ple crazing at the notch tip in polystyrene LEFM specimens,
so that the anomaly becomes much less apparent. Even so, it
is extremely difficult to reduce the tip radius of an introduced
macroscopic crack to 0.25 mm. In that respect, small scratches
always have an advantage that can compensate for their small
size. The new LEFM criterion explains why they can be so
effective in initiating both crazing and final fracture.

7. Conclusions

This study has demonstrated that a coherent theory of craze
formation can be constructed on the basis of the established
principles of polymer mechanics. A criterion based on fracture
mechanics overcomes the difficulties inherent in previous cri-
teria, notably those caused by ignoring small flaws, or treating
them as inconvenient geometrical irregularities that pose
intractable problems of stress analysis [5].
The answer is to recognize that crazing is essentially a frus-
trated fracture process, and that the dimensions and geometry
of the initiating flaw must be included in any criterion for
craze formation. For this reason, attempts to develop criteria
based simply on stress invariants can never be successful.
Crazing, like brittle fracture but unlike shear yielding, can
be suppressed by carefully polishing the surface of the speci-
men to reduce the flaw size. This observation alone is suffi-
cient to demonstrate that the initiation stage is best modelled
using fracture mechanics.

The adventitious flaws responsible for crazing in plain
glassy thermoplastics are usually extremely small, with di-
mensions below 1 mm, so that initiation takes place from
what appears to the naked eye to be a perfect surface. The
key to understanding the effectiveness of such small flaws is
the very low fracture toughness associated with breakdown
of the van der Waals bonds in polymeric glasses such as poly-
styrene and PMMA. Nascent crazes with thicknesses of
approximately 10e20 nm form at a critical strain energy
release rate Gnasc< 1 J m�2, whereas final fracture of the
craze, at a thickness of w3000 nm, is characterized by a frac-
ture energy GIC w 300 J m�2.

This paper has also shown how the von Mises yield crite-
rion can be used in combination with the meniscus instability
mechanism to explain the observed dependence of s1(craze)
on s2 in biaxial tests on plain specimens containing no visible
cracks or flaws. The reference state is uniaxial tension, where
S0 is both the critical tensile stress s1(craze) and the critical
local von Mises effective stress required for craze extension,
seL(crit). Introducing a second principal stress s2 changes
the effective stress in the craze tip plastic zone, thereby in-
creasing or decreasing the flow rate in the meniscus. To induce
meniscus instability, it is necessary to raise or lower the rate of
separation of the craze walls, which requires an increase or
decrease in s1(craze). Analysis of the data on crazing under
biaxial loading shows that the critical tensile stress acting on
the craze tip plastic zone at instability remains constant at S0

when the biaxial stress state is varied.
Because of the inconsistencies in previous treatments of

craze formation, it has hitherto proved difficult to develop
the subject properly as a branch of polymer physics. The
new perspective outlined in this paper overcomes these obsta-
cles, and opens up the area to further investigation.
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